Laboratory Assessment Tool for Bacterial Meningitis Surveillance

Use this tool to conduct an initial laboratory assessment to assess the overall laboratory capacity for the detection of bacterial meningitis pathogens.

INTRODUCTION

Bacterial meningitis remains a global health concern. It is critical that laboratories have the capacity to identify the causative pathogen for clinical and public health decision making. In order to ensure that the laboratory is equipped to perform this task, this quick and simple tool serves as a guide for the assessor for evaluating the overall laboratory capacity for the detection of bacterial meningitis pathogens. This tool will help identify the strengths and gaps in the current infrastructure, laboratory processes, test services, equipment, and skillsets of the individual needed for strengthening the laboratory. The intended user of this tool could be an individual, preferably someone familiar with meningitis testing, interested in expanding a laboratory’s capability for meningitis testing. This document can also be used by an individual interested in strengthening his/her own lab for meningitis testing.

TOOL INSTRUCTIONS:

Planning the assessment

The assessor should inform the laboratory of the assessment date and request that essential personnel be present on the day of. In preparation for the assessment, the assessor should thoroughly review over the checklist to become familiar with the content. It is important to plan out what tests and processes should be observed; protocols and documents to be reviewed; and questions to ask in order to maximize efficient use of the visit. This tool may be used internally by laboratories wishing to assess their own capacity and identify gaps or externally as part of a formal assessment by partners. It is recommended that formal assessments begin with an opening meeting with key personnel to communicate the goals, provide an overview of the process, and reinforce that the finding will help improve the overall capacity for meningitis testing. During the walk-through, the assessor could communicate minor finding(s), to allow the laboratory to remediate the issue.

The assessor should note major finding(s), along with recommendations for improvement, on the document for future action.

Prior to initiating the assessment permission/clearance should be obtained from the senior laboratory official on-site to view laboratory logbooks, databases, and to take pictures. Pictures can be helpful in illustrating certain aspects of the laboratory, especially with regard to overall infrastructure, spacing and zoning of activities, condition of equipment, and biosafety practices.

Upon completion of the assessment, the assessor should conduct a summary meeting, highlighting the strengths and areas for improvement. The assessor could also consider sharing a copy of this checklist with the laboratory.
Completing the assessment

The laboratory assessment questions are designed to capture a snapshot of the laboratory during normal operating hours. Areas evaluated consist of electrical issues, presence/absence and correctness of protocols, conditions of equipment, laboratory biosafety practices, quality control testing programs, training for staff members, and recordkeeping of laboratory results. Typical methods employed during the assessment include this checklist, but is not limited to interviews, observations, and review of laboratory notebooks and reports for completeness of entries.

During the laboratory walk-through, the assessor should note:

- Expired reagents
- Adherence of lab staff to safety practices
- Condition of equipment
- Daily temperature monitoring and recording
- Observing testing procedures
- Use of personal protective equipment
- Cleanliness of the laboratory
- Supply inventory

ACKNOWLEDGEMENTS

This document is the product of collaborative efforts between several agencies, including the U.S. Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO) Headquarters, WHO–Regional Office for Africa (WHO–AFRO), WHO–AFRO Inter-Country Support Teams (WHO–AFRO/IST), Agence de Médecine Préventive (AMP), Ministries of Health and the National Reference Laboratories from Burkina Faso, Mali, Niger, Chad and Togo, the Bill & Melinda Gates Foundation, Gavi, and the CDC Foundation. The authors thank all MenAfriNet Consortium members and members of the Laboratory Working Group for their input for the creation of the following laboratory assessment form.
Laboratory Assessment Tool for Bacterial Meningitis Surveillance

A. LABORATORY INFORMATION

Date: ____________________ Name and title of interviewer: ____________________

Name of Laboratory: ____________________

Location:

- [] Region
- [] District
- [] Community
- [x] NRL

Type of Lab:

- [] Hospital Lab
- [] Public Health Lab
- [x] Other

Key contacts

Name: ____________________ Title: ____________________ Email: ____________________ Phone: ____________________

Name: ____________________ Title: ____________________ Email: ____________________ Phone: ____________________

Name: ____________________ Title: ____________________ Email: ____________________ Phone: ____________________

B. GENERAL QUESTIONS

1. No. lab staff performing: Meningitis testing: Molecular testing:

2. Unique identifier used to link epidemiologic data with lab results? [] Yes [] No At which level is it assigned?

3. How many meningitis specimens have been received since beginning of this year?

 - Culture attempted: ____________________ Tested by PCR: ____________________ Other (specify): ____________________

4. Is staff available to receive/process specimens 24/7? [] Yes [] No Hours of operation:

 Days of operation on week: from _______ to _______

C. SPECIMEN TRANSPORT AND RECEIPT

1. Does the lab receive specimens from other labs for testing? [] Yes [] No No. of labs: ____________________

2. Is there an organized system for transporting specimens? [] Yes [] No How?: ____________________

3. Are there accepting/rejecting criteria for receiving specimens? [] Yes [] No Specimen Accessioning SOP? [] Yes [] No

4. What is the average time for specimen accessioning?

 CSF for testing/culture Frequency: ____________________ Arrival condition: ____________________

 - [] Yes [] No Average delay between collection and arrival at lab: ____________________

 CSF for PCR Frequency: ____________________ Arrival condition: ____________________

 - [] Yes [] No Average delay between collection and arrival at lab: ____________________

 Trans-Isolate (TI) Media Frequency: ____________________ Arrival condition: ____________________

 - [] Yes [] No Average delay between collection and arrival at lab: ____________________

 Blood Frequency: ____________________ Arrival condition: ____________________

 - [] Yes [] No Average delay between collection and arrival at lab: ____________________

 Serum Frequency: ____________________ Arrival condition: ____________________

 - [] Yes [] No Average delay between collection and arrival at lab: ____________________

 Tissue Frequency: ____________________ Arrival condition: ____________________

 - [] Yes [] No Average delay between collection and arrival at lab: ____________________

5. Which types of specimens are received?

6. What percentage of specimens are accompanied by:

 - Case report form: ____________________ % Test request: ____________________ % Other: ____________________ %

7. How is specimen information recorded upon receipt in the lab? [] Logbook [] Computer [] Other (specify): ____________________

8. Are CSF specimens collected in this facility? [] Yes [] No If yes, by whom? ____________________ SOP? [] Yes [] No

9. Where do the samples come from:

 - [] Your facility [] Region [] District [] Community [] Other
D. SPECIMEN TESTING

1. Does the lab perform the following tests? (Check all that apply).

<table>
<thead>
<tr>
<th>SOP in lab?</th>
<th>SOP in lab?</th>
<th>SOP in lab?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-processing for RDT/culture</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Macroscopic examination</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>White cell count</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Gram stain</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fix: □ Flame □ Methanol □ Other: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latex agglutination</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Protein</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Glucose</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Culture</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PCR</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Conventional</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Real-time</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Antimicrobial susceptibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slide agglutination:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species identification</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Serogrouping (Nm)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Serotyping (Hi, Sp)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Disc diffusion</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Other: __________</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

2. What is the testing algorithm for meningitis specimens? 1) 2) 3) 4) 5)

3. Is a QC program in place? □ Yes □ No Is QC performed on each individual test? □ Yes □ No

List:

4. Where is culture media prepared? □ In-house □ Another lab: □ Commercial:

If in-house, is an SOP available? □ Yes □ No Is media QC’d for: □ Sterility □ Growth

Are the following reagents/equipment for making media available and functional today?

- Balance
- Glassware
- Water bath
- pH meter
- Dehydrated culture media
- Stirring hot plate
- Blood

Source of blood:

5. How are specimen results recorded? □ Logbook □ Computer □ Other (specify):

Who enters the lab data?

E. SPECIMEN STORAGE

2. How many CSF specimens are in storage?

3. Which medium is used to store bacterial isolates? □ Greaves □ Blood □ Skim milk/glycerol □ Other:

5. How many isolates are in storage?

6. PCR type: □ Conventional □ Direct

7. PCR detection: □ Species □ Nm serogrouping □ Hi serotyping □ Sp serotyping □ Are SOPs available? □ Yes □ No

Source of primers and probes: □ Are SOPs available for DNA extraction? □ Yes □ No

8. Which of the following areas/equipment are available and functional today?

- Area/room for clinical extraction
- Separate pipette sets
- If real-time PCR: □ Updated antivirus on computer
- “Dirty” area/room for DNA addition
- PCR workstation(s)
- Surge protection
- “Clean” area/room for PCR prep
- Brand/Model of PCR machine: __________________________
- Backup UPS

F. DATA MANAGEMENT

1. Functional computer available for lab data? □ Yes □ No □ Updated antivirus? □ Yes □ No □ Functional printer? □ Yes □ No

Back-up system? □ Yes □ No □ Secure/protected access? □ Yes □ No □ Operating system: __________________________

2. Do you send a standardized report to officials? □ Yes □ No □ If yes, to whom? □ Surv official(s) □ Referring lab □ Other:

Type of report: □ Email □ Phone □ Paper □ Other: □ Frequency: __________________________

3. What is the turnaround time for reporting results back to clinicians? __________________________

How? □ Email □ Phone □ Paper
G. EQUIPMENT

1. Generator? □ Yes □ No Is there a logbook for equipment maintenance? □ Yes □ No

2. What type of electric outlet(s) are used?

3. Is the temperature monitored and recorded daily for refrigerators, freezers, and incubators? □ Yes □ No

4. Is the following equipment available and functional? (check all that apply and please verify function)
 - Centrifuge (Max 14,000 rpm): Type ____________________
 - Candle jar
 - Vortex
 - Freezer: □ −20°C □ −80°C □ non-CO₂
 - Incubator: □ CO₂
 - Biosafety cabinet (Level 2) □ Jar with CO₂ generators □ Heat block
 - Refrigerator (4-8°C) □ Autoclave □ Microscope □ Gas burner(s)

9. PCR type: □ Conventional □ Direct
 - PCR detection: □ Species □ Nm serogrouping □ Hi serotyping □ Sp serotyping
 - Are SOPs available? □ Yes □ No
 - Source of primers and probes: ____________________________
 - Are SOPs available for DNA extraction? □ Yes □ No

10. Which of the following areas/equipment are available and functional today?
 - Area/room for clinical extraction
 - Separate pipette sets
 - If real-time PCR: □ Updated antivirus on computer
 - “Dirty” area/room for DNA addition
 - PCR workstation(s)
 - Surge protection
 - “Clean” area/room for PCR prep
 - Brand/Model of PCR machine: __________________________
 - Backup UPS

H. SUPPLY MANAGEMENT

1. Does the lab experience procurement problems? □ Yes □ No

2. From whom do you procure supplies/reagents (by %)? MoH: % WHO: % Private vendor: % Other Lab: %

3. Average estimated delay in receiving regular supplies/reagents?

4. Master list of lab supplies/reagents available (with vendor, product #)? □ Yes □ No

5. Does the lab track the expiration date of the reagents? □ Yes □ No

6. Are the following materials available and adequate supplies? (check all that apply)
 - Latex agglutination kit □ Yes □ No
 - Sterile cryotubes □ Yes □ No
 - LP kits □ Yes □ No
 - Oxidase □ Yes □ No
 - T-I Media □ Yes □ No
 - Venting needles □ Yes □ No
 - Reference strains □ Yes □ No
 - Antiserum □ Yes □ No
 - Gram stain kit □ Yes □ No
 - Crystal Violet □ Yes □ No
 - Gram’s Iodine □ Yes □ No
 - Ethanol (95%) □ Yes □ No
 - Safranin □ Yes □ No
 - Culture media □ Blood agar □ Yes □ No
 - Chocolate agar □ Yes □ No

I. LABORATORY STAFF TRAINING AND BIOSAFETY

1. Is training available for the technical staff? □ Yes □ No If yes, what kind? □ Microbiological □ Biosafety □ Data management

2. Which PPE is available and required:
 - Lab coat □ Gloves □ Respiratory protection □ Other

3. Specific biosafety SOPs? □ Yes □ No
 - Chemical safety? □ Yes □ No
 - Disposal of infectious/hazardous waste? □ Yes □ No

4. Does the lab have a restricted access policy? □ Yes □ No